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Abstract 

In this paper, a deterministic nonlinear model for the transmission dynamics of childhood 

disease is formulated and rigorously analyzed to explore the effect of loss of vaccine-induced 

immunity.   
The model was shown to exhibit two equilibria, namely, disease free equilibrium and an endemic 
equilibrium and their local stability was established using the computated effective reproduction 
number  VR . The disease free equilibrium is globally asymptotically stable whenever VR  is less 
than unity by using an appropriate Lyapunov function. The global asymptotic stability of 
endemic equilibrium was established whenever VR  exceeds one by constructing a Lyapunov 
function using suitable combination of composite quadratic and logarithmic functions. 
Numerical simulation was done to validate its satisfactory agreement with the qualitative results, 
revealing that the loss of vaccine-induced immunity may be harmful to the spread of childhood 
disease provided it exceeds it critical threshold. 
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1.0 Introduction 

In recent years, infectious diseases has taken the attention of vast numbers of individual, 

public health agency, government and non-government organization due to its devastating 

impact on public health and imposed great financial burden on the affecting communities 

(Akinyemi et al., 2016; Sahu and Dhar, 2015). The most common form of infectious diseases are 

childhood diseases which include chicken pox (also called varicella), rubella, measles, mumps, 

poliomyelitis, etc. Children within the age of 5 and below are more prone to these diseases due to 

their frequent contact with their peers, at school or other place (Cui et al., 2014). In 1980, it was 

recorded that about 2.6million individuals died of measles each year (World Health 

Organisation, 2013). Although, tremendous effort were made to develop vaccines in preventing 

childhood diseases. These vaccines were considered to be the most effective strategy in 

combating the spread of these diseases (Makinde, 2007). Meanwhile Peralta-Rodrigues et al., 

2015, stated that despite the substantial reduction of morbidity, new cases of varicella infection 

were recorded mostly in highly vaccinated school communities after the implementation of the 

universal varicella vaccination program in the USA in 1955. Various studies of these cases have 

suggested that the predictors of immunity loss such as the time since vaccination and vaccination 

of new born may be associated with the persistence of varicella (Peralta-Rodrigues et al., 2015 
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and other references cited there in). Thus it becomes crucial to study the effect of loss of vaccine-

induced immunity in the transmission dynamics of childhood diseases. 

In scientific literatures, the use of mathematical models to investigate the transmission 

dynamics of infectious diseases has aroused the interest of Applied Mathematicians and 

Biologist. (Al-Sheik et al., 2011; Dogon and Akin, 2012). Several epidemic models for the 

transmission dynamics of childhood disease are found in (Moghadas and Gumel, 2003; 

Makinde,2007; Yildirim and Cherruault, 2009; Ibrahim and Ismail,2012; Cui, et al., 2014;El-

Shahed and El-Naby,2014), although loss of vaccine-induced immunity and disease induced 

death were not considered. Epidemic models for childhood disease will be more realistic for 

developing countries when disease induced death rate are considered,examples of such are found 

in (Ochoche and Gweryina, 2014; Stephen et al., 2015) while SVIR model with loss of vaccine-

induced immunity are found in (Peralta-Rodrigues et al., 2015). Hence this paper is concern with 

the formulation and rigorous analysis of  a chidhood epidemic model with loss of vaccine-

induced immunity with the aim of  extending and complementing the one presented in 

(Makinde,2007; Ibrahim and Ismail, 2012; Cui, et al., 2014). 

The paper is organized as follows.  Section 2 presents the model formulation. In Section 

3, equilibrium states, stability and threshold analysis of the model are presented while Section 4 

presents numerical simulation and discussion of results. Section 5 concludes the paper.  

 

2.0 Model Formulation 
A non-linear deterministic model for the transmission dynamics of childhood disease in the 
presence of loss of vaccine

 
induced immunity and constant vaccination is built by dividing the 

total human population at time t, denoted by  N t into three disjoint epidemiological 
subpopulations, which are the susceptible population  S t , infected population  I t  and the 
removed population  R t representing the population of  both vaccinated and recovered 
individuals.  
Thus        N t S t I t R t   .              (1) 
The following assumptions were considered to construct the model 

1. Individuals are only recruited into the susceptible and removed group. 

2. The studied population varies with time and is homogenous. 

3. Birth rate is not equal to death rate. 

4. The force of infection is expressed as    S t I t . 

5. The induced death rate of childhood disease was incorporated 

The model is therefore governed by the following system of non-linear differential equations. 

 

 

 

1
dS SI

P N S R
dt N

dI SI
I

dt N

dR
P N I R

dt


  


  

   

    

   

   

                 

(2) 

The non-dimensional form of system (2) is given by: 
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1

2

1
ds

P si s r
dt

di
si K i

dt

dr
P i K r

dt

   



 

    

 

  

                  

(3) 

Where 
1 2, , , ,

S I R
s i r K K

N N N
             and  n s i r    

Table 1: Parameters Description and Hypothetical Values 

Parameters Symbols Hypothetical Values Source 

Recruitment rate   0.4 Makinde,2007 

Disease transmission coefficient   0.8  Ibrahim and Ismail,2012 

Natural death rate   0.02 Safiel et al., 2012; Ibrahim 

et al., 2015. 

Disease induced death rate   0.09 Rahman and Zou, 2012. 

Recovery rate   0.03 Makinde, 2007 

Vaccination rate of newborn P   0,1  Ibrahim and Ismail,2012 

Rate of loss of vaccine-induced 

immunity 
   0,1  Assumed 

Lemma 1: The close set  3( , , ) : 1s i r s i r       is positively invariant and attracting 

with respect to the system (3) 

Proof 

From (3), we note that
dn

n i n
dt

          and establish that ( ) (0) 1t tn t n e e        by 

a standard comparism theorem (Lakshmikantham et al., 1989). ( )n t approaches 1 as t  , so 

the system (3) is positively-invariant and attracting in .Thus the model is mathematically and 

epidemiologically meaningful in   (Hethcote,2000), and it is sufficient to consider solutions in

 . 

 

3.0 Existence of Equilibrium States, Stability and Threshold Analysis 

The disease free equilibrium of system (3) is obtained as

   2

0

2 2

1
,0,

* * *
, ,

K P P P

K K
s i r

 


  
   

 
 

 

The effective reproduction number denoted by VR will be used to analyze the stability of the 

model at 0 . This is determine by using the next generation method as shown in (Heffernan et al., 

2005), where F  and V  are matrices denoting the new infection terms and transition terms at 0  

respectively. Therefore 

1

2

00

0 0

Ks
F V

K
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1 2

(1 )
V

K P P
R FV

K K

 
 

 
                   

(4) 

The endemic equilibrium of the model denoted by  1

* * *, ,s i r   expressed in terms of VR , is 

obtained as  

    

 

*
1 21

1

1 2 2

* * * 1
, ,, , VK K RK P i

K K K
s i r   


  

  
     

                                          

(5) 

 

3.1 Local Stability Analysis of Equilibrium States 

Theorem 1: The disease-free equilibrium of system (3) is locally asymptotically stable whenever 

1VR  and unstable otherwise. 

Proof 

The Jacobian matrix of the system (3), evaluated at 0  is given as 

 0 1

2

0 0

0

s

J s K

K

  

 



  
 

  
  

                 

(6) 

The characteristic equation of (6) is of the form 

  2

1 0 0a a                                                    

(7) 

where 

 
1 2 1 *

0 2 1 *

a K K s

a K K s





  

 
 

Expressing 1 0and a a in terms of VR , with the aid of (4) to have 

 

 

1 2 1

0 1 2

1

1

V

V

a K K R

a K K R

  

 
 

It is obvious that the roots of (7) are all negative whenever 1VR  .  Thus by Routh Hurwitz 

criterion, we conclude that the system (3) is locally asymptotically stable if and only if 1VR  . 

The epidemiological implication of Theorem 1 is that the spread of  childhood disease can be 

effectively controlled in the community (when 1VR  ) if the initial sizes of the sub-populations 

of the model are in the basin of attraction of the disease-free equilibrium 0 , otherwise the 

disease will continue to persist. 

 

Theorem 2: The endemic equilibrium of system (3) is locally asymptotically stable whenever 

1VR  and unstable otherwise. 

Proof 

The Jacobian matrix of the system (3), evaluated at 1  is given as 
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 1 1

2

0

0

s s

J i s K

K

   

  



   
 

  
  

                 

(8) 

The characteristic equation of (8) is of the form 

 3 2

2 1 0 0b b b                                      

(9) 

where 
* *

2 2 1

* * * *

1 1 2 2 2 2 1 1

* * *

0 1 2 1 2 2

b K K i s

b K K K K i K s K i K s

b K K i K K i K s

  

      

    

    

      

   

 

Rewriting 2 1 0, andb b b in terms of VR , using (4) to have 

 

*

2 2

*

1 2 2 1

*

0 1 2

b K i

b K K i K i

b i K K

 

  

 

  

  

 

 

Since the components of the endemic equilibrium are positive provided 1VR  , then 2 1 0, andb b b   

are greater than zero. Hence concluding the proof since Routh Hurwitz criterion is satisfied. 

 

3.2 Global Stability Analysis of Equilibrium States 

To qualitatively show that the dynamic behavior of the system is independent of the initial sizes 

of the sub population, global stability analysis is done by constructing suitable lyapunov 

function. Thus establishing the following results. 

 

Theorem 4: The disease-free equilibrium of system (3) is globally asymptotically stable 

whenever 1VR  and unstable otherwise. 

Proof. Consider the Lyapunov function 

1L i                                                                                         

(10) 

Differentiating (10) with respect to time t  to obtain 

1dL di

dt dt
   

Thus, using the second equation from system (3) to obtained 

1
1

dL
si K i

dt
                                                            

(11) 

Substituting 
 2

*

2

1K P P
s s

K

 
   into (11), to get 

 21
1

2

1K P PdL
K i

dt K
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1

1 2

1
1

K P PdL
K i

dt K K




  
  

 

 

 1
1 1V

dL
K R i

dt
   

Clearly, 1 0
dL

dt
 when 1VR   and 1 0

dL

dt
  if and only if 0.i   It follows from Lasalle’s Invariance 

Principle (La Salle and Lefschetz, 1961), that every solution to the system (3) with initial 

conditions in   approaches 0  as t . Thus, since the region   is positively-invariant, the 

disease free equilibrium is globally asymtotically stable in   if 1VR  . 

 

Theorem 4: The endemic equilibrium of system (1) is globally asymptotically stable whenever 

1VR  and unstable otherwise. 

Proof. Consider the Lyapunov function 

 

      
 

 
2 2

* * * * * *

2 *

21 2

2 2

i
L s s i i r r i i i In r r

i

  

 

  
           

 
        (12) 

Differentiating (12) with respect to time to obtain 

      
 

 
*

* * * *2
22

1
2

dL dn i di dr
s s i i r r r r

dt dt i dt dt

  

 

 
          

 
 

             

 
  

*
* * *2

1

*

2

2
1

2

2

dL i
s s i i r r s r i si K i

dt i

r r P i K r

 
    



 
 



 
              

 


   

      (13) 

Using    * * *s r i       and *

1K s  to simplify (13) as

                   

      

* * * * * * * *2

* * *

2

2

2

dL
s s i i r r s s r r i i i i s s

dt

r r i i K r r

    

 




                


    

 

               

          

2 2
* * * * * *2

* * * * *

2

2

2
2

dL
s s r r i i s s r r i i

dt

i i s s r r i i K r r

   

 
  



              


       

 

 

       
 

 
2 2 2

2* * * *2
2KdL

s s r r i i r r
dt

 
 




           

Thus, for 1VR  , 2 0
dL

dt
 , where 2 0

dL

dt
  holds only when * *,s s i i   and *r r . The only 

largest invariant set in   2, , : 0
dL

s i r
dt

 
  

 
is the endemic equilibrium. Therefore the endemic 
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equilibrium 
1 is globally asymptotically stable in the interior , by LaSalle’s invariance 

theorem principle (La Salle and Lefschetz, 1961). 

 

3.3 Threshold Analysis and Critical Thresholds 

To measure the effect of vaccination and loss of vaccine-induced immunity qualitatively, we 

perform threshold analysis. This is done by computing the partial derivatives of VR with respect 

to P  and   respectively to obtain 

1 2

0VR

P K K

 
 


                          (14) 

2

1 2

0VR P

K K






 


                              

(15) 

We have from (14) that VR  is a decreasing function of P , thus increase in P will reduces VR  

and consequently reduces the burden of childhood disease. Similarly, we note from (15) that  VR  

is an increasing function of , which signifies that childhood disease will continue to persist as   

increases. 

The need to obtain critical threshold for P and   is of great importance in eliminating or 

containing the spread of childhood disease. Thus we have from (4) the critical thresholds for 

vaccination and loss of vaccine-induced immunity denoted by CP  and C   respectively as 

 2 1

C

K K
P






                   

(16) 

  1

1

1
C

K P

K

 




 



                

(17) 

It is readily seen by Theorem 1
__ 

4 that the following results hold true. 

 

Theorem 5: The disease free equilibrium of system (3) is globally asymptotically stable 

whenever CP P and unstable otherwise. 

 

Theorem 6: The endemic equilibrium of system (1) is globally asymptotically stable whenever 

C  and unstable otherwise. 

 

4.0 Numerical Simulation and Discussion 

In this section, some numerical solutions of the model for different initial population sizes is 

presented using the various values of the parameters stated in Table.1 and to validate that these 

solutions are in agreement with the qualitative behaviors of the model obtained in section 2. 

Thus, we choose different initial population sizes such that the total population, 1s i r    as 

follows. 
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Table 2: Effect of vaccination at different parameter values  0.3938CP   

0s  0i  0r      
VR  Remarks 

1 0 0 0.05 0.9 0.3077 
0  stable (disease eradication) 

0.8 0.2 0 0.05 0.9 0.3077 
0  stable (disease eradication) 

0.8 0.2 0 0.05 0.3 1.1282 
1  stable (no eradication) 

0.7 0.2 0.1 0.05 0 1.5385 
1  stable (no eradication) 

Note: The table is generated by using the parameter values in Table 1 

 

Table 3: Effect of loss of vaccine-induced immunity at different parameter values  0.0114C   

0s  0i  0r      
VR  Remarks 

1 0 0 0 0.36 0.9846 
0  stable (disease eradication) 

0.8 0.2 0 0.01 0.36 0.9981 
0  stable (disease eradication) 

0.8 0.2 0 0.03 0.36 1.0233 
1  stable (no eradication) 

0.7 0.2 0.1 0.05 0.36 1.0462 
1  stable (no eradication) 

 

Note: The table is generated by using the parameter values in Table 1. 

Fig.1 depict the numerical solution curve of the system (3) for 0.05,  0.9, 0.3938CP P  and 

0.3077VR  , showing the impact  of high vaccination coverage on the initial total population 

that is completely susceptible. The population of susceptible group decreases while the removed 

group increases with time. The total population remains at disease free equilibrium, since the 

infected group stays at zero at all time. Thus elimination of childhood disease is achievable 

whenever  CP P  or 1VR   and the disease free equilibrium is globally stable. 
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Fig. 1. Time plots of system (3) with different initial conditions for 1vR   (i.e. CP P )  

Fig.2 depict the numerical solution curve of the system (3) for 0.05,  0.3, 0.3938CP P  and 

1.1282VR  , showing the impact  of low vaccination coverage on the initial population groups 

with a small population of infected individuals. The population of susceptible individuals 

decreases at first and slightly increases while the population of removed individuals increases 

with time. The population of infected individuals gradually decreases and will never tend to zero. 

Thus childhood disease will continue to persist whenever CP P   or 1vR   and the endemic 

equilibrium remains stable globally. 
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Fig. 2. Time plots of system (3) with different initial conditions for 1vR   (i.e. CP P )  

Fig.3 shows the numerical solution curve of the system (3) for 0.36P  , 0,  0.0114C  and 

0.9846VR  , displaying the impact of absence immunity loss on the disease free initial 

population groups. The population of susceptible individuals decreases while the population of 

removed individuals increases with time. The total population remains at disease free 

equilibrium, since the population of infected individual stays at zero at all time. The population 

of infected individuals gradually decreases and will never tend to zero. Thus whenever C   or 

1VR  , childhood disease will go into extinction and the disease free equilibrium is stable 

globally. 
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Fig. 3. Time plots of system (3) with different initial conditions for 1vR   (i.e. C  )  

 

Fig.4 shows the numerical solution curve of the system (3) for 0.36P  , 0.03,  0.0114C 

and 1.0233VR  , displaying the impact of immunity loss on the initial population groups with a 

small population of infected individuals. The population of susceptible individuals decreases 

while the population of removed individuals increases with time. The population of infected 

individuals gradually decreases and will never tend to zero. Thus childhood disease will continue 

to persist whenever C    or 1vR   and the endemic equilibrium remains stable globally.  
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Fig. 4. Time plots of system (3) with different initial conditions for 1vR   (i.e. C  )  

 

5.0 Conclusion 

In this paper, the epidemiological dynamics of childhood disease in the presence of loss of 

vaccine-induced immunity and constant vaccination was studied by formulating and analyzing a 

nonlinear model of three compartments. Some of the key findings are summarized as follows. 

1. The model is globally-asymptotically stable at disease free equilibrium whenever the effective 

reproduction number VR  is less than unity. 

2.  The model’s endemic equilibrium is globally asymptotically stable whenever the effective 

reproduction number exceeds unity. 

3. An increase in vaccination coverage reduces effective reproduction number and consequently 

reduces prevalence of childhood disease. Thus elimination of childhood disease is achievable by 

increasing vaccination coverage above the critical vaccination threshold.  

4. Higher level of loss of vaccine-induced immunity results in increase in effective reproduction 

number, and, hence aggrandizes the burden of childhood disease. Loss of vaccine-induced 

immunity is detrimental whenever it exceeds it critical threshold. 
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